Appropriate Problems For Decision Tree Learning

 
Video Tutorials
Artificial Intelligence Tutorial
Machine Learning Projects TutorialPython Video tutorial
Computer Graphics Video TutorialC++ Video Tutorial
Big Data Analytics Video TutorialSoft Computing Video Tutorial
Placement Video TutorialJava Video Tutorial

What are appropriate problems for Decision tree learning?

Although a variety of decision-tree learning methods have been developed with somewhat differing capabilities and requirements, decision-tree learning is generally best suited to problems with the following characteristics:

Video Tutorial

1. Instances are represented by attribute-value pairs.

“Instances are described by a fixed set of attributes (e.g., Temperature) and their values (e.g., Hot). The easiest situation for decision tree learning is when each attribute takes on a small number of disjoint possible values (e.g., Hot, Mild, Cold). However, extensions to the basic algorithm allow handling real-valued attributes as well (e.g., representing Temperature numerically).”

2. The target function has discrete output values.

“The decision tree is usually used for Boolean classification (e.g., yes or no) kind of example. Decision tree methods easily extend to learning functions with more than two possible output values. A more substantial extension allows learning target functions with real-valued outputs, though the application of decision trees in this setting is less common.”

3. Disjunctive descriptions may be required.

Decision trees naturally represent disjunctive expressions.

4. The training data may contain errors.

“Decision tree learning methods are robust to errors, both errors in classifications of the training examples and errors in the attribute values that describe these examples.”

5. The training data may contain missing attribute values.

“Decision tree methods can be used even when some training examples have unknown values (e.g., if the Humidity of the day is known for only some of the training examples).”

Solved Numerical Examples and Tutorial on Decision Trees Machine Learning:

1. How to build a decision Tree for Boolean Function Machine Learning

2. How to build a decision Tree for Boolean Function Machine Learning

3. How to build a Decision Tree using ID3 Algorithm – Solved Numerical Example – 1

4. How to build a Decision Tree using ID3 Algorithm – Solved Numerical Example -2

5. How to build a Decision Tree using ID3 Algorithm – Solved Numerical Example -3

6. Appropriate Problems for Decision Tree Learning Machine Learning Big Data Analytics

7. How to find the Entropy and Information Gain in Decision Tree Learning

8. Issues in Decision Tree Learning Machine Learning

9. How to Avoid Overfitting in Decision Tree Learning, Machine Learning, and Data Mining

10. How to handle Continuous Valued Attributes in Decision Tree Learning, Machine Learning 

Summary

This tutorial discusses, what are appropriate problems for Decision tree learning? If you like the tutorial share it with your friends. Like the Facebook page for regular updates and YouTube channel for video tutorials.

Leave a Comment

Your email address will not be published. Required fields are marked *